GCSE Foundation Maths - Learning Journey

Торіс	Remember this!				
Four operations	Remember Triis:	345	1647 - 549 = 4 5-13-1-		
Ordering Values	Show full workings	- <u>+129</u>	15613417 - 549		
Powers of ten	Use place value columns to compare	123 × 5	1098		
10000001100	The decimal points appears to move left or right	123 123	3rd Step 0 3 2		
4		$\begin{array}{ccc} x & \underline{5} & \underline{x} & \underline{5} \\ \underline{-5} & \underline{-15} \\ \end{array}$	$\frac{x-5}{615}$ 9 $\left 2^2 8^1 8 \right $		
Comparing and Ordering decimals	use place value columns to compare (write them one on top fo the other)	Work out 3.17 × 5.8	Rounding Rhyme 9		
Rounding	Know the difference between decimal places and significant figures	1 15 06 35 5 1 124 08 56 8	Five to Nine - Climb the Vine!		
Calculating and estimating with decimals	Estimating means that you do nto work	36	Zero to Four - 5 Slide to the Floor!		
	it out exactly	2 18	123		
Squares and Cubes	Squaring does nto mean x 2it means	2 9			
Roots	times by itself! Square root does not mean divid by 2	3 3			
Powers	don't just multiply by the power!	$5 = 5 \times 5$	x5x5 = 625		
Laws of Indices		Factors of 16: 1 2	anded value 4 (8) 16		
	When multiplying, you add the powers	The highest com			
Factors Multiples and Primes	Know the difference. Remember to	Factors of 24: 1 2 3	3 4 6 8 12 24		
Product of prime factors	list ALL of the factors	Let us find the L.C.M. o Multiples of 28 are 28,			
HCF and LCM - Identification	Draw the tree List and lookwhat do they have in		24, 36, 48, 60, 72, 84 , 96	i,	
HCF and LCM - Venn diagrams	common?		tiple (L.C.M.) of 28 and 12		
,	Draw the trees and then put it in a Venn diagram. Middle = HCF	$2300000000000 = 2.3 \times 10^{11}$			
Gathering like terms		0.00000000	$000002 = 2 \times 10$	D-15 TEBOARD MATHS	
-	Think of it like a shopping list (2 appes + 3 apples = 5 apples)	2 x a = 2a	2a x 3b = 6ab	Laws of indices	
Simplifying expressions	Remember that a x a = a²	3 x q = 3q 2a x 3 = 6a	$a \div 2 = \frac{a}{2}$ $a + a = 2a$	$a^m \times a^n = a^{m+n}$ $a^m \div a^n = a^{m-n}$	
Algebraic laws of indices	When multiplying, you add the powers (the numbers at the front however you do normally)	a x b = ab	a x a = a ²	$(a^m)^n = a^{m \times n}$	
		Expand & Si			
Expanding brackets	Multiply verythign inside by the value at the front	5(x+3)+6	<u> </u>	torise: $32 = 4(x+8)$	
Expanding and simplifying	Do what it saysexpand and then	5x + 15 + 6x	x - 24		
Factorising lienar expressions	simplify The opposite of expanding - put it into	11x - 9			
Substitution	brackets swap the numbers in and then use	5(3x+2)-2=-2(1-x) 15x+10-2=-2+14		e-side like terms.	
Writing expressions and formulae	BIDMAS remember that 4 x a is written 4a	15x + 8 = -2 + 14 $15x + 8 = -2 + 14$ $15x + 8 - 14x = -2 + 14$	x		
	Tomorpor mar 1x a b will on ta	x + 8 = -2	Solve.	osite-side like terms.	
		x + 8 - 8 = -2 - 8 $x = -10$			
	1				